AD~A118 840 GEORGIA INST-OF TECH ATLANTA SCHOOL OF INFORMATION A=-ETC F/G 9/2 \ d
' EQUIVALENCE TESTING FOR FORTRAN MUTATION SYSTEM USING DATA FLOW=-ETC(l1)
DEC 81 A TANAKA NOOO14=79=C-0231
UNCLASSIFIED G6IT=1CS=82/10 . NL

| OV88ITIV O

GIT-1CS-82/10

EQUIVALENCE TESTING FOR FORTRAN MUTATION
SYSTEM USING DATA FLOW ANALYSIS*

Akihiko Tanaka

" July, 1982

D.T- | S~y

EA IR
SEP3 1982
School of Information and Computer Science

Georgia Institute of Technology
Atlanta, Georgia 30332 A

*This research was supported in part by ONR Grant No. N0OOl4-79-C-0231
and ARO Grant No. DAAG29-80-C-0120.

[This document has been ap;;roved
for public release and sale; its

distribution is unlimited.

e

EQUIVALENCE TESTING FOR FORTRAN MUTATION SYSTEM
USING DATA FLOW ANALYSIS

A THESIS
Presented to
The Faculty of the Division of Graduate Studies
By
Akihiko Tanaka

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Information and Computer Science

Georgia Institute of Technology
December, 1981

;|
]
ii
|))
ACKNOWLEDGEMENTS)
The author would 1like to thank his thesis advisor,
Dr. Richard A, DeMillo for valuable suggestions and thought- 3

ful criticisms, the members of his reading committee, Dr.
Richard J. LeBlanc and Dr. N. Jon Livesey, for their helpful
comments and suggestions, and his academic advisor, Dr. >
James Gough Jr., for his assistance with the final

manuscript. The author also wishes to express his gratitude

\
to Dr. Frederick G. Sayward of Yale university for his help- 2
ful comments. The author 1is also grateful to the Division

L of Graduate Studies for the waiver of certain format

requirements so that this thesis could be prepared on the ;)
PRIME 400 computer system using the Software Tools text

editor and text formatter. This research was supported in

part by ONR Grant No. NOOO14-79-C-0231 and ARO Grant No. ?
DAAG29~-8u-C~0120.

— e e =
e B AR et § o s ar . .
N
3
i}
i .
.

Lo A

—_ .- .

iii
TABLE OF CONTENTS
Page
ACKNOWLEDGEMENTS . cocveeccoosccncoscsscsscsscssosancsall
LIST OF ILLUSTRATIONS.....-.........................iv
Chapter
I. INTRODUCTION...ccvesvcocovesccoccsnccosansl
II. DATA FLOW ANALYSIS....eeeeeeesseesononenssd ’
Algorithms é
Implementation |

III. APPLICATIONS OF DATA FLOW ANALYSIS..ee0e...l2

IV, CONCLUSIONS...ecccocessccssscvscccscascescssdll
APFENDIX

A. EXAMPLE OF DATA FLOW ANALYSIS...c.e0s00000456

B. EXAMPLE OF A SAMPLE RUN....ccvevvevcnesseeb2

REFERENCES.:ccveseecvoctocsvsscsoscsvsscscsscssscscsesb?

’ufg;e55335°i3;""")
FTIS CRARI i

DTIC TaR In) ‘
Unannounesd n } i

Justification, !
By;_«__________________f !
_Distritutien, : 3
_—— i e iam . - *.J 4 :

| Avatllebiliey Crieg | '!
Avafl eii/qp ‘
Dist | Spoeiny

AN TR N e e e - -

LIST OF ILLUSTRATIONS

FiBUre. ieeeeioeessonsscsccscsssnscecasosssssessscsssslage
1.1 System Flow of the Automatic Detector..........6
2.1 Predecessor and Successor of a8 Node.....cev000019
2.2 Hierachy of the Data Flow Analysis System......26
2.3 Hierachy of the BSCBLK Routine....ceseeccccccss28
2.4 Hierachy of the INTRVL ROUtiNe.....cceosssessss29
2.5 Hierachy of the DTAFLW Routine...eccessceececese30
2.6 Hierachy of the INTDF Routine....ecceecceccsassee3l

2.7 Hierachy of the PHASE1 Routine.....ceeeeeseeees33

2.8 Hierachy of the PHASE2 Routine............5....3ﬂ
3.1 Hierachy of the Applications System............50

Table

3.1 Parameter Kind Decision Table....ecceesscssscssl9

o ——— o we ma e e
e e i

iv

ﬁll

ABSTRACT

Equivalence Testing for FORTRAN Mutation System
Using Data Flow Analysis
Akihiko Tanaka
67 Pages
\\ Directed by Dr. Richard A. DeMillo

£>Program mutation 1is a new approach to program
testing, a method designed to test whether a program is
either correct or radically incorrect. It requires the
creation of a nearly correct program called a mutant from a
program P. An adequate set of test data distinguishes all
mutants from P by comparing the outputs, Obviously, an
equivalent mutant, which performs identically to P, produces
the same outputs as those of P, Thus, for adequate data
selection, it is desirable that an equivalent mutant be
excluded from the testing process., For this purpose, the
system equivalence command has been implemented as an
equivalent mutant detector. As yet, the command has not
been automated. Automatic detection by this command 1is
implemented here as an application of data flow analysis.
Algoritms and implementation techniques of data flow
analysis are described. Also 1its application as an

automatic detector is described.

\

i e (i Rt i

S
.

i

o

g

f

CHAPTER I
INTRODUCT ION

In conventional program tesing methods, a program is
considered as a black box and tested for input cases to
execute all statements in the program at least once. Then
the outputs produced are checked for correctness. The fun-
damental question in program testing is:

If a program is correct on a finite number of test

cases, is it correct in general ? ‘
Even 1if the test results are correct, it does not guarantee
the absence of errors, or program correctness. Program
testing can be used to discover the presence of errors, but
not their absence. However, confidence in the reliability
of a program can be increased by different testing
approaches. For instance, a selection of test cases based
on the program structure 1is more reliable than a random
selection [Huan) and symbolic execution is more reliable
than execution on numeric data [Howd].

Most testing strategies appeared in 1970's and some
are described in [GG] and [Huan]l. Program mutation is a
relatively new approach to program testing, a method
designed to test whether a program is either correct or
radically incorrect [DLS]1. By radically incorrect is meant
that a program contains errors due to grossly misunderstand-
ing the program apecification. Many errors may remain

undetected even when every statement in a program is

et

B e AU

executed at least once. On the other hand, if different

parts of a program are executed over data which takes into
”

- — ———————-
. ——— v o A e

account the kind of errors that can occur'{n that part of
the program, then a significant number of undetected errors ‘
will be detected. Mutation testing can construct test data
of this type.
Program mutation requires the creation of nearly
correct programs called mutant programs (the precise defini-
tion of a mutant will be described later). Assuming that a
program P performs properly with a set of test data T and a
mutant program P' is generated from P, if T distinguishes P
and any P', that is, all outputs differ, then T is indeed a
comprehensive set of test data; whereas if some P's do not
change the test results, but since they might change on
augumented test data T', T is inadequate.
To achieve the design goal of program mutation,
interactive program mutation systems have been implemented
for several different languages such as FORTRAN and COBOL.
One version of mutation systems, the Fortran Mutation System
(FMS.2), was designed primarily as an experimental device

for the mutation research groups at the Georgia Institute of {

Technology and Yale University. This system produces C
programs which differ from the original one in very simple ;
ways: a single change is made on a statement. For example, '
D;
‘ iiw
o‘

!
)
[}
4 S . o - : " ettt

] b . e —— . . .

w

I=1I+1

may be changed as follows:
I=J
I=1

1 ; I was replaced with J

|l 4+

1 ; + was replaced with #

I =1I4+2; 1 was replaced with 2.

A statement generated by the system as shown above is
referred to as a mutant and a program which differs from the
original is referred to as a mutant program.

During the course of execution of all mutants created
by the system, mutants are classified into three categories:
dead, live and equivalent mutant. By a dead mutant is meant
that a mutant program is distinguished from the original by
either failing to produce any result or producing a
different result, whereas by a live mutant is meant that a
mutant program produces the same result as the original by
testing data sets. An equivalent mutant is defined as one
in which the mutant program performs identically to the
original, that is, the control-path of this mutant program
is equivalent to that of the original.

As mentioned above, a set of test data T is
inadequate unless every result of the mutation run is
different. 1In other words, some live mutant programs which
should have failed did not. Mutation testing must continue
by executing 1live mutants on augumented test data T'.
However, if any equivalent mutant is detected from live

mutants before their execution, it is eliminated from a live

N

e s ——— et e ©

mutant 1list, It causes the decregse of mutant runs.
Therefore detection of equivalnt mutapts plays an important
role in improving system performance.

Then the question arises:

How are equivalent mutants detected ?

FMS.2, some equivalent mutants can

In the current version of the FOR?RAN Mutation Systenm,
Ie detected, though the

process is not automatic: a user mus provide information
to the system equivalence command isjued from the terminal.

For instance, consider the following 'xample:

I=1 /
J=14+1. N /

A mutant derived from the above statement is
J = ABS (I) + 1.,
Since I is greater than zero, I is always equal to ABS(I).

Thus, the mutant does not affect the original, that is, this
mutant is equivalent. It can be detected with user
assistance, i.e., the user executes an equivalence command
which tells the system that the value of I is greater than
zero. The format of an equivalence command will be discus-
sed in Chapter 1III. The above example is a very simple
case. However, recognition of values of each variable at a
certain point in a program, if the program flow is com-
plicated, is difficult and tedious, leading to the omission
of variables or mis-setting of their values. Thus,

automatic equivalent mutant detectors are desirable.

——cae + T are————————- R e
- - T e

O

2

If detection of equivalent mutants is to be
automafed, a systematic mechanism 1is required for its
implementation, This mechanism must provide as output the
arguments needed for execution of the system equivalence
command. As discussed later in Chapter III, the arguments
of this command are variables and their values at a given
point of a program. Because of these requirements and the
ease of applicability and implementation, data flow analysis
was chosen.

Prior to the discussion of the system flow of the
automatic detector shown in Figure 1.1, data flow analysis
and its terminology are briefly described here. Data flow
analysis is a static analysis method considering data items,
or variables in a program flow graph. Data flow is a
control path of a program with information regarding
variables. This information contains whether any reference
to some variable lies in a control flow or interrupted by
another value assigned to the variable. In order to
recognize the information, a flow graph of the program is
created by partitioning the program into basic blocks. A
basic block is defined as a sequence of statements to be
executed that have no branches but the first and the last
statement of the sequence, Nodes of the flow graph

represent basic blocks.

-~

L

. —— -

o e e e

LT LI D

-

trmmmn s e ———— c—me——
! (source program) |
trmm—m e ———-—— —————— +
!
v
tmmm——— -
i FMS,2 |
m—————— -+

!

v
et DT T —————————— +
! (intermediate code array) |
e e — e —————————————————- +

!

v

e e e +

| basic block routine |

O e L P +
|

v

e e e ————— +

{ interval routine |

fmm——————— ————me——— +
|

v

fmmmmcceccn e, —— +
| data flow routine |
D T et +

{

v

O e D +
| (output) |
P —mme———- +
|
v
tm———— - o o o e +
| application routine |
T T PR P ———
!
v
LT e +*
| E command |
temmrcmre———— +

Figure 1.1 System Flow of the Automatic Detector

———

C e R - s e —aon

9

e o e

P

ki

After the creation of the flow graph. the graph |is
reduced by recognizing an interval that represents a new
node of a reduced graph. An 'interval' is a group of nodes
whose edges go to nodes inside the group except for edges at
the entrance and the exit. Graph reduction, frequently
discussed in the rest of this thesis, is defined so that
nodes in an interval are merged into a single node and all
edges from inside the interval are deleted and new edges to
nodes in other intervals are created. A graph is reduced in
the above manner until it is irreducible. Finally, the
information regarding variables is built by using all flow
graphs. Based on this information, data flow analysis can
determine at a given node of a program flow graph which
variables f'reach' a node and are available at the exit from
the node. By 'reach' is meant that a variable is defined at
one node and is available at the entrance to another node.
The details of data flow analysis will be discussed in the
next chapter.

The system as shown in Figure 1.1 was designed and
implemented for automatic detection of equivalent mutants.
The FORTRAN Mutation System, FMS.2 [BLSD], which includes a
scanner, a parser and a code generator, parses FORTRAN
source programs and generates intermediate codes. The basic
block routine partitions a source program into basic blocks,
based on intermediate codes from FMS3.2 and creates a flow

graph of a source program. The interval routine reduces a

o o nd i ha hveee & Rn ae

J U P

B e ST R

flow graph from the basic block routine as much as possible
and keeps all reduced flow graphs, from the original graph
to the final graph. All graphs generated by the basic block
routine and the interval routine are input for data flow
analysis. As output, the data flow routine produces
variables that reach each node, and variables that are
available at the exit from each node. Then an application
routine of data flow analysis creates information for an
equivalence command from output of data flow analysis.
Finally, an equivalence command is issued by the system as
if it were issued by the user.

The purpose of this thesis is to detect equivalent
mutants by automatically using data flow analysis in a
system that creates data for an equivalence command and that
issues this command automatically as if issued by the user.
A detailed discussion of data flow analysis is given 1in
Chapter II which includes algorithms and implementation
techniques. Chapter III covers applications of data flow
analysis, how to use output from data flow analysis. The
conclusion in Chapter IV contains the results of the system
described in Chapter II and III. Appendix A contains an
example of data flow analysis and Appendix B contains a sam-

ple run on FMS.2 with a description of equivalent mutants.

CHAPTER II
DATA FLOW ANALYSIS

This chapter describes algorithms and implementation
techniques of data flow analysis, including the basic block
routine and the interval routine. The idea is derived from
[BC)] and [AC). Data flow analysis, a technique employed for
the system, examines data-flows other than control-flows in
a program. This analysis is based on information collected
at compile time. The FORTRAN parser on the FM3.2 system
generates intermediate codes from a source program which are
independent of a target machine and more related to a
statement in a source program than machine codes. Those
intermediate codes are saved in a f;le during program par-
sing. Because of ease of access to the file and so that the
data flow analysis system can be independent of the parser,
a flow graph is created by using these codes.

The data flow analysis system consists of three
phases: basic block, interval and data flow. Data flow
analysis requires a flow graph of a source program and
graphs reduced from the original graph. Two pre-processors
of the data flow routine, the basic block routine and the
interval routine, generates these graphs. Figure 1.1 in
Chapter I depicts the system flow of data flow analysis,

The basic block routine partitions a source program
into basic blocks and coreates a flow graph. The graph

generated by this routine is passed to the intervil routine.

e

» ot

10

This routine examines flows of the original graph and merges
any possible node in the graph into a single node. Then all
unnecessary edges are deleted to reduce a graph. Graph
reduction continues as far as it can. All redued graphs are
saved and passed to the data flow routine. This routine
examines data flows of a source program using all informa-
tion passed from two routines discussed above. The analysis
of data flow is based on flow graphs to see if values
assigned to variables are changed.

Prior to the further discussion of data flow
analysis, graph representation in memory is described here
(the details will be discussed later in SECTION 2.2). A
node has two different kinds of pointers that represent
edges to and edges from the node: one pointer points to a
destination node for an edge and the other points to a
source node. If a node has branches, that is, if there are
multiple edges leaving the node, all destination nodes are
linked together. Also all source nodes are linked if more
than one edge come to the node.

Seqtion 2.1 describes the algorithms of the basic
block rbutine, the 1ntervai- routine and the dsta flow
routine, and Section 2.2 describes their implementation

techniques.

0"

0

1

SECTION 2.1 Algorithms

This section discusses the details of the algorithms
of the three phases of the data flow system described above.
The description of the basic block routine describes how to
distinguish corresponding intermediate codes for each
FORTRAN statement and how to use these codes for partition.
The next sub-section discusses the algorithm of the interval
routine, i.e., detection of intervals and reduction of flow
graphs, The main phase of the data flow analysis system is
discussed in the last sub-section. The data flow routine
describes the process of determination of available
variables at each basic block.

BASIC BLOCK ROUTINE .

The basic block routine referenced in Figure 1.1
partitions a FORTRAN source program into basic blocks by
using intermediate code generated by FMS.2, and then creates
a flow graph of the source program. Since the flow graph
directly corresponds to a source program, it is called the
original graph or the lowest order éraph. This graph 1is
passed to the interval routine for reduction.

A Dbasic block is a sequence of statements to be
executed which has only one entrance or ncae (the first
basic block does not have an entrance) and which has the
only exit or none (the basic block which ends with a RETURN
statement or a STOP statement does not have an exit). Thus

a basic block is considered to be a node of a flow graph.

P

- e 3 e ——— E e

12

The remainder of this sub-section discusses seven baxic
rules of partition on a FORTRAN statement. After recogni-
tion of a statement, a basic rule is applied on the
statement. According to these rules, incoming and outgoing
edges to and from a node are determined. Also, the begin-
ning and the end of a node are determined. The basic rules
applied on a statement are:
1) A statement with a label is the entrance to a basic
block.
Prior to this statement, the last basic block must be
closed, if it is not; a new basic block beginning with this
statement will be opened because it is possible to jump into
this statement by a GOTO statement. A basic block cannot be
entered in the middle.
2) An IF statement is an exit from a basic block.

i) logical IF statement.

IF (expression EXPR) statement S

The intermediate codes for a logical IF statement are as
follows:

?OP 0

1
i codes for expression EXPR

!
TRF index of the next statement
[]
i
{ codes for statement S

The first code for an IF statement is IOP and only the IF
statement starts with IOP, A logical IF statement 1is

A e ——. " e

m—— a-

s
13
¢ distinguished from an arithmetic IF statement by including a
key code TRF; while codes for an arithmetic IF statement
include a key code AIF, A jump address is set when the
' statement S is a GOTO statement. The S itself is considered
to be a basic block if S is a RETURN statement, a STOP
statement or an ASSIGNMENT statement. It is not necessary
¢ to consider the ASSIGNMEXT statement a basic block except
when it is a part of an IF statement. The IF statement 1is
partitioned into two basic blocks: the IF (expression EXPR)
¢ itself is a basic block and the then-part statement S is
also a basic block because a value assigned to a variable in
the ASSIGNMENT statement changes if the boolean expression

EXPR is evaluated to be true (see Example II below). The

following two examples illustrate the above two cases. In
Example I, the IF statement is not partitioned into two
¢ basic blocks because the execution of the IF statement does
not affect any values of variables (I, J and K). On the
other hand, the execution of the IF statement in Example 1II
¢ might cause changes of a value of K. In this case, the
value of K depends on path selection in the flow. So the IF
. statement is partitioned into tvo basic blocks (2) and (3).
o
®

P . - - - 2 = e -

v

Example 1

I
J

IF (I .EQ.

K

1
2

10 STOr
END

J) GOTO 10 ==

basic block

wN-l..n—l
vt gl gt St Nt

The flow graph of the above example is:

{ 1 }omas
| |
H !
v i

{ 2} i
i H
! |
v i

{ 3 }{es

Example II

I=1

J =z 2

IF (I ,EQ. J) K

STOP

END

n
w

basic block
- {11}
}

{
-—-{2}¢&{3)}
{4)

N -

The flow graph of the above example is:

{

{

{

1
:
!
v
2
|
|
H
|
|
v
"

14

-———

[P -

C e e———

15

ii) arithmetic IF statement.
IF (expression EXPR) L1,L2,L3

The intermediate codes for an arithmetic IF statement are as

follows:

IoP O
|
| codes for expression EXPR

1

{

AIF O

LABEL index of L1 in STMT array

LABEL index of L2 in STMT array
LABEL index of L3 in STMT array

As mentioned above, a key code AIF distinguishes an arith-
metic IF statement from a logical IF statement. Three jump
addresses are set according to the values of the three LABEL
codes.

3) A DO statement is the entrance to a basic block.

DO 10 I = expression EXPR1, EXPR2, EXPR3

The intermediate codes for a DO statement are as follows:
IDNT index of I in the symbol table
SEPR ©

i codes for expression EXPR1
SéPR 0

! codes for expression EXPR2
SéPR 0

: codes for expression EXPR3
DAST index of statement 10
A statement whose code starts with IDNT might be either a DO
statement or an ASSIGNMENT statement. To find out which it

is, check the last code for this statement: the DO

- 4

J

—ta.

. T —— At e

e -

e —————— T T

PR ——— el o T

16

statement always ends with a key code DOST, while the
ASSIGNMENT statement always ends with a key code ASSIGN.
The DO loop is partitioned into basic blocks just 1like the
other statements. Nested DO loops are handled with a stack
which pushes down DOST with value, which is a DO loop 1label
(in the above case, 10 is a label), whenever DOST appears
and pops it up whenever a corresponding CONTINUE statement
appears (i.e., 10 CONTINUE appears in the above case).
4) A GOTO statement is an exit from a basic block.
i) simple GOTO statement.
GOTO L1
The intermediate code for a GOTO statement is as follows:
BR index of target statement
The only code generated for a simple GOTO statement is BR.
A jump address is set.
ii) computed GOTO statement.
GoTo (L1,L2,L3,...Ln) expression EXPR
The intermediate codes for a computed GOTO are as follows:

|
| codes for expression EXPR

|

CGOTO 0

LABEL index of L1
LABEL index of L2
LABEL index of L3
| .
{ .

| .
LABEL index of Ln
A statement whose last code is LABEL is either a GOTO

statement or an arithmetic IF statement. To determine this,

-

e eme— e o e T

—

|

17

check the code which precedes the first LABEL code: if it

is CGOTO, then the statement is a computed GOTO statement;

otherwise, it is an arithmetic IF statement (a code preced-

ing the first LABEL must be AIF). There are as many jump

addresses set as LABEL codes, Only a computed GOTO

statement generates more than three jump addresses, while an

arithmetic IF statement generates three, a 1logical IF

statement and a CONTINUE statement two.

5) A CONTINUE statement is an exit from a basic block.

10 CONTINUE

The intermediate code for a CONTINUE statement is as follows:
CONT 0O

The only code generated for a CONTINUE statement is CONT. A

CONTINUE statement indicates the end of a DO 1loop,

corresponing to a DO statement (in the above case it

correspondes to DO 10 statement). Whenever a CONTINUE

statement appears and a stack for a nested DO loop is not

empty, a statement label of a CONTINUE statement is compared

with a DO statement label contained in the stack. If labels

are identical, the stack pops up an entry.

6) A STOP statement is itself a basic block.

The intermediate code for a STOP statement is as follows:
STP 0

The only code generated for a STOP statement is STP. The

STOP statement is considered to be an independent basic

block because it is convenient to make an exit node of a

P e VI,

i

et e o = et

-

e p——

18

flow graph and it is necessary to make an exit from a basic
block when the STOr statement is the then-part of an IF
statement,
7) A RETURN statement itself is a basic block.
The intermediate code for a RETURN statement is as follows:

RET O
The only code generated for a RETURN statement is RET. The
RETURN statement is treated exactly as a STOP statement.
INTERVAL ROUTINE

This sub-section discusses the interval analysis
algorithm, Using a flow graph passed from the basic block
routine, this routine performs detection of an interval that
is a group of nodes whose immediate predecessors are from
the node of the same group except for a header node. It
also performs reduction of flow graphs. The graph generated
by a source program is referred to as the lowest order
graph. The last graph created by the interval routine,
which is no longer reducible, is referred to as the highest
order graph. A graph reduced from another graph is said to
be higher in order than the graph to be reduced. For exam-
ple, if G2 is reduced from G1, G2 is higher than G1; whereas
G1 1is 1lower than G2. All flow graphs reduced by this
routine are passed to the data flow routine.

By a header node is meant an entrance to an interval.
By a predecessor is meant a node which comes 1into another

node in a flow graph, whereas by a successor is meant a node

¢ ammeme - -

. AT, o

19

which goes out from another node (see Figure 2.1). An

interval is a new node for the next reduced graph.

{ : } ---~ predecessor of node { 2 }
|
v
{21}
|
|
v
{ 3} -=-=- successor of node { 2 }

Figure 2.1 Predecessor and Successor of a node

The first process of determining an interval 1is to
select the root node (the entry point) of a flow graph as a
header node. Then each successor node of the header node is
examined whether it comprises an interval. A node ¢to be
added to the interval should be one whose predecessors all
come from inside the interval. A node that fails to com-
prise the interval is considered to be a candidate of a
header node of another interval. When all successors of
each node in the interval are examined but no more nodes can
be added to the interval, the next header node is selected
to recognize another interval. The process continues until
all nodes are in intervals. The detailed algorithm of
detection of intervals in a PASCAL-like language is shown in
Algorithm 2.1,

e il

B B O 41 h 3P

PR

20

procedure interval-routine ;
var
H : array of header ;
I : array of interval ;
begin
add the first node of the flow graph to H ;
for all h in H do
begin
add h to I[h] ;
for all i in I[h] do
for all j in { successors of i } do
if (all predecessors of j in I[h]) then
add j to Ilh] ;
for all i in I[h] do
for all j in { successors of i } do
if not (j in I[h] " then add j to H ;
end
end ; -- end of interval-routine

Algorithm 2.1 Interval Routine

The algorithm for reducing graphs is rather simple.
An interval will represent a node of the next higher order
graph, i.e., the graph reduced from a graph which is proces-
sed for detecting intervals. After detection, edges between
nodes within an interval are deleted and edges from outside
the interval are changed to point to the header node of the
interval; edges to other nodes outside the interval are
changed to point to the header nodes of each interval.
DATA FLOW RQUTINE

This sub-section discusses the data flow routine, the
main and last routine of the data flow analysis system. All
graphs generated by the basic block routine and the interval
routine are collected for this routine to examine data

flows. The routine determines the variable that reaches

21

each node and the variable that is available at the end of
each node by tracing each variable on a flow graph. All
information generated by the routine is passed to the system
described in the next chapter, Chapter III.

The data flow analysis algorithm described below
consists of two phases.. A definition, frequently discussed
below, is a statement that assigns a value to a variable,
replacing a previous value; that is, a definition is an
assignment statement. All sets of definitions referred to
below are A, D, DB, DOUT, P, PB and R. These contain
definitions for each node in all flow graphs (see also the
declaration part of Algorithm 2.2). Phase I determines P,
the definitions preserved on some path through the interval
to the exit, and D, the definitions in the interval that may
be available, depending on the path. PB, a set of
definitions preserved in some node, and PD, a set of locally
available definitions, are computed by using values of P and
D. Any definition that reaches a node is said to be preser-

ved by the node. A locally available definition is the last

detinition of a variable within a node. For example,
I :=1; === (1)
J 122 ; === (2)
K s 3 ; === (3)
I sz U 5 === (&)

Assuming that the above four assignment statements comprise

[PPSR SNV

ML A B sarr - o ———

s

——

22

a node, locally available definitions are (2), (3) and (%)
since variable I is re-assigned in statement (4) (statement
(1) is 'killed' by statement (4))., R[i] denotes a set of
definitions that can reach a node i from inside the inter-
val. Phase I is performed in the following order: from the
original graph to the highest order graph. On the other
hand, phase II is performed in the reverse order of phase I.
Ali), appearing in phase 1II, denotes a set of available
definitions on the edge 1i. Phase II determines A, the
detinitions available at the exit from a node, and R, the
definitions that reach the node from other nodes, by using
the results of phase I, i.e., PB and PD.

The details of the algorithm are shown in Algorithm
2.2. Note that + and * denote UNION and INTERSECTIUN over

sets respectively.

Bt e -

.

23

procedure data-~flow-analysis ;
var
A : set of available definitions ;
D : set of definitons in the interval
that may be availabe on the exit ;
DB : set of locally available definitions ;
DOUT : set of definitions reaches from outside ;
P : set of definitions preserved on some path
through the interval to the exit ;
PB : set of definitions preserved ;
R : set of definitions that reach nodes ;

G set of flow graph ;
begin
inicialization ;
phasel ;
if (DOUT <> { }) R[1] := DOUT ;
phasell ;

end ; -- end of data~-flow-analysis

procedure phasel ;

var
g : graph~number ;
h : header-node-number ;
x : exit-edge-number ;
l : edge~from-inside ;
P : input-edge~-number ;
begin

n := number of graphs generated by interval-routine ;
for g:i= 1 ton - 1 do
begin
if (g > 1) then
for all 1 in { edges in Glgl } do
begin
X $= corresponding exit edge
in Glg-1] to i ;
h := header node of I[h] with x ;
PB[i] := P[x] ;
DB(1] := (R[h] " P[x]) + DIx] ;

end ;
for all h in { header nodes in G[(gl] } do
begin
for all i in { exit edges of h } do
begin
Pl[1i] := PB[1i] ;
D[i] := DB[i] ;
end ;

R{h] := empty-set ;
for all 1 in { edges which enter h
from inside I[h] } do
R[h] := R[h] + D[1] ;
end ;

o

? ‘—,’ W« —
24 |
for all j in { non-header nodes in G[gl] } do
begin
PP := empty-set ;
DP := empty-set ;
for all p in { input edges of node j } do
begin
PP := PP + P(p] ;
DP := DP + D[p] ;
end ;
for all 1 in { exit edges of node j } do
begin
P[] := PP ® PB[1] ;
D[i1]) := (DP ® PB[1i]) + DB[i] ;
end ;
end ;
end ;
end ; ~- end of phasel
procedure phasell ;
var
g : graph-number ;
h : header-node-number ;
p : input-edge-number ;
begin
n := number of graphs generated by interval-routine ;
for g:= n - 1 downto 1 do
begin
for all i in { nodes in Glg+1] } do
begin
h := header node in Glg]
which i represents in G{g+i] ;
R[h] := R[(h] + R[i] ;
end ;
for all h in { header nodes in G[gl] } do
begin
for all i in { exit edges of h } co
A(1) := (R(h] ® PB[i]) + DB[i]
for all j in { non-header nodes in I[h] } do
begin
R[J) := empty-set ;
for all p in { input edges to j } do
R[j] := R[J] + Alp] ;
for all i1 in { exit edges to j } do
Al1] := (R[J] ® PB[1]) + DB[1i] ;
end ;
end ; .
end ; ,
end ; -- end of phasell D
Algorithm 2.2 Data Flow Analysis i
i
i
o
L
U
- k 1 - g - :
A !

25

SECTION 2.2 Implementation

This section discusses implementation techniques of
the data flow analysis system shown 1in Figure 1.1, The
system was divided into two phases, the data flow analysis
system and the applications system. The data flow analysis
system consists of three routines: the basic block routine,
the interval routine and the data flow routines, as shown in
Figure 1.1. The algorithms discussed in the last section
have been implemented. The applications system will be
discussed in the next chapter. .

The initial discussion in this section concerns
interrelationships among routines, that is, which routines a
routine calls and from which routines a routine can be cal-
led. The former is defined as a child routine and the lat-
ter is derined as a parent routine. In the following
discussion, the relation between a parent and a child
routine is referred to as a hierarchy. A figure of the
hierarchy depicts a parent-child relationship. .An arrow =->
in the figure goes from a parent to a child routine. The
second discussion deals with the data structure of the data
flow analysis system,

Figure 2.2 depicts the hierarchy of the data flow
analysis system. The basic block routine, the interval
routine and the data flow routine are BSCBLK, INTRVL and
DTAFLW respectively. The DRIVER routine called by FMS.2
controls these three routines and WRITVL of the data flow

P

26

analysis system. First, DRIVER calls BSCBLK which
partitions a source program into basic blocks and produces a
flow graph; it then calls INTRVL repeatedly until a graph
cannot be reduced. DRIVER can recognize when a graph can no
longer be reduced, by comparing the number of nodes in the
previous graph with that of the graph last generated.
Finally, DTAFLW is called to produce a set AVLSET of
available definitons for each node and a set RCHSET of
definitions that reach each node. For tracing and debugging
purposes, WKITVL prints a header node and other non-header
nodes for each interval. BSCBLK, INTRVL and DTAFLW calls

routines. Each routine is described further below.

tmmmamnan—t
| DRIVER |
trmmm———— +

!

L - e 0 e e e +

! ' | |

{ { ! !

\/ \/ \j v
tmmmemacmd tmmmmm———) Prmmn———— trem———— -
{ BSCBLK | { INTRVL | | WRITVL | | DTAFLW |
trm—————— + m——————— trmcmmne- + Prmm—n——— +

Figure 2.2 Hierarchy of the Data Flow Analysis Systenm

In order to create a flow graph, BSCBLK requires the
mechanism for generating edges. For this purpose, BSCBLK
calls the SETOUT routine when an arithmetic IF statement or

a computed GOTO statement appears. Intermediate codes for

g . , -
S T , T T T TS e
. o o -0 . : %

e e - m——

. ———— Ayl -t i e S

STy SR SN IR

ot

27

both statements include LABEL code. SETOUT seis the
statement number to be executed next; it will be changed to
a basic block number after the creation of the original flow
graph. Such a basic block number r=2presents a destination
node of an edge. WRINTR prints internal forms (LIMS array,
Symbol Table, Statement array and CODE array [BH]) generated
by FMS.Z2.

It would be helpful to discuss FMS.2 for understand-
ing interfaces between FMS.2 and a newly implemented system.
The FORTRAN Mutation System (FMS.2) is an interactive system
for testing the completeness of a set of test data on a
FORTRAN source program. The user is requested to give the
name of the program being tested, mutant operators which are
to be applied, and test cases which are used. During
program parsing, information is saved in the arrays includ-
ing those discussed above and mutants are created according
to operators specified by the user. Then the system
executea each mutant on test data, eliminating dead mutants.
The results of mutant runs are reported back to the user.
He can request various reports and summries, He can

continue the experience if necessary.

e e e

-

-

LR

A

[

28
rom——- —
| BSCBLK |
termmm——— +
!

L LT +

| i

H !

v v
trm—me——— + brmmm———— +
} SETOUT | | WRINTR |
tm——mm—— -+ e ———— +

Figure 2.3 Hierarchy of the BSCBLK Routine

A flow graph generated by the BSCBLK routine should
be reduced for examining data flows. To do this, DRIVER,
the control routine of the data flow analysis system, calls
INTRVL after BSCBLK. INTRVL partitions a flow graph into
intervals which are nodes in the next higher order flow
graph. This algorithm was described in Algorithm 2.1 in the
last section. Whenever this routine is called by DRIVER, it
creates the next higher order graph to the extent that a
graph can be reduced. An edge of a flow graph is deleted
simply by deleting a node number which represents the
destination of the edge. FNDNOD 1is called to examine
whether a node belongs to some interval. This routine is
useful to check whether all immediate predecessors are
already in the interval. After finding one interval, INTRVL
selects the next unprocessed header node, calling SHLHDR
which selects the smallest number among unprocessed header

nodes.

-

. e —— e - i s e %

P

29
trm——em———- +
| INTRVL |
rmanmnn—
]
Y +
!]
H |
v v
rr—mmme—ad terccman- +
| FNDNOD | ! SMLHDR |
e ———— —— tm—m———— +

Figure 2.4 Hierarchy of the INTRVL Routine

After the execution of the BSCBLK routine and the
INTRVL routine, all information requested by the DTAFLW
routine is generated. Then DRIVER calls DTAFLW (for the
details see Algorithm 2.2 in the last section). DTAFLW
consists of INTDF, PHASE1, INTRCH and PHASE2 as shown 1in
Figure 2.5. INTDF initializes DB and PB sets discussed in
the previous section. Performance of PHASE1 and PHASE2 is
described in Algorithm 2.2 above. DTAFLW calls INTDF,
PHASE1, INTRCH and PHASE2 in order; each of which is called
once. INTRCH, called between PHASE1 and PHASE2, initializes
the R set for the root of the highest order graph, if a
definition reaches the program from outside such as a
parameter of a subroutine in FORTRAN. Variables set by DATA
statements are treated as parameters. Since all four
routines called by DTAFLW call some other routines, details

of each routine will be described below.

-

i

=

30
bmm—————— +
| DTAFLW |
tmmmm———— +
!
e e —————— e ——————————— +
! |] i
i ! ! |
v v v v
trm—————— + r—————— -— tmmmmn——- + e
| INTDF | | PHASE1 | |} INTRCH | { PHASE2 |
dommm———— + bemmmm——— + b ——— + e ———

Figure 2.5 Hierarchy of the DTAFLW Routine

INTDF stands for INiTialization for the Data Flow
analysis routine. The first subroutine called from INTDF,
FNDPRM finds external definitions and are set by DATA
statements. The former are parameters of subroutines passed
from outside the program. If parameters are found, BBNUM
and ENTPNT fields in DEFTBL are set; other fields, however,
are set simply to zero (i.e., variables are undefined). On
the other hand, if the latter is found, BBNUM, ENTPNT and
TYPKND in DEFTBL and its value are set. Variables set by
DATA statement are constant since they are read-only
variables in FMS.2. In order to distinguish the former from
the latter, BBNUM field is set to -1 for the former and 0
for the latter.

e ——— - —

© o e ——— e - e g e an e ”

rﬂ

——— . e

e

———

i
\
!
31 }
f
..... — ?
I INTDF | 3
e 2 ;
| !
+ - ,em———t
! | | ! '
i ! ! | !
v v v v
------------- -—— o ——————— el £
I FNDPRH I I DEFPB | | DEFDB | | WRITDT |
Y + - + + I) et 4
!
H o ——
v |]
tommmam—— + | |
! FMS.2 | v v
jroutines| brmmm———— bommm———— +
| ADDRES | | FNDASN i | SETDB |
i DP | tr————— —— LT
! REL H !
| SCTYPE | temmm————— ——
em—em—aay i |
!]
v v
------- + e Y 5
l FNDCON i i FNDID H
-t e +
i
v |
mmmm - +]
| FMS. 2] !
lroutines| !
| DP | i
! REL |
trmmcm———

Figure 2.6 Hierarchy of the INTDF Routine

DB and PB are defined from the original flow graph by
calling DEFDB and DEFPB respectively. Further, DEFDB calls
FNDASN to find an assignment statement and, if found, calls
SETDB to determine a DB set. To find an assignment

statement that assigns a oonstant value to a variable,

r—-
[

D

P R

32

FNDCON is called. If a constant value is found on the
right-hand side, that is, the expression on the right-hand
side is a simple constant, the value of the constant and its
type (integer, rea, or 1logical) are set in the table of
definitions (DEFTBL). FNDID performs recognition of locally
available definitions. Definitions appearing more than once
within a node are detected and killed by the FNDID routine
except for the last appearance. Also, DEFTBL is updated if
a definition is killed. Using the results from DEFDB, PB
set i3 determined; for each node PB is all definitions in
DEFTBL minus DB for each node. WRITDT prints contents of
DEFTBL, identifier, value and its value if any.

PHASE1 determines PB, DB and R sets for each node in
the original graph to the highest order graph. PB and DB
are computed by using values of P and D in the previous
graph. If a node is a header, P and D are equal to PB and
DB respectively; however, in the case where a node is not a
header, the unions over P and D for all input edges to the
node are used to compute P and D for each exit edge. DEFPRE
det'ines this union over P, called DFPSET, and DEFDEF defines
the union over D, called DFDSET. For each header node, R is
defined by the union over D for edges that reach the header
node from inside the interval. DEFRCH defines the above
union. During processing in PHASE1 three set operc.ons are
utilized: union, intersection and assignment which are

referred to as UNION, INTRSC and TRNSFR respectively in

- e e w

Al v Py

33
PHASE1,
temm————— +
i PHASE1 |
tem—————— +
i
m—m———— e ———— —————— ———ememecee—- —————— +
| !] i
i | ! i
v v v v
$mmmmm———— + rm—m———— -+ L ettt + e +
| DEFPRE | | DEFDEF | | DEFRCH | ! set |
trmmme—a- + tmmmmmnnnt demcen- —— { operators |
i {] i TRNSFR |
] ! ! i UNION i
v v v H INTRSC |
o mmnen— + mmm———— -+ et + e e can—}
{ UNION | ! UNION | { UNION |
S + Ammmmeeeay { TRNSFR |
et

Figure 2.7 Hierarchy of the PHASE1 Routine

PHASEZ2 1is the final step in _the DTAFLW routine,
determining the A set for each exit and the R set for each
node in the graph from the highest order to the original
graph. The final output of data flow analysis , A and R in
the original flow graph, is produced by PHASE2. For a non-
header node, R is defined as the union over the A set for
all input edges to the node which is computed by calling the
DEFAVL routine, The three set operations are utilized in
PHASEZ2 as well as PHASE1l,

R

Yo

34
o —— +
| PHASE2 |
e ————- +
]
D e +
! |
i H
v v
tmmemm———— + e —— +
| DEFAVL | | set]
$m—mmmeea + | operators |
! H TRNSFR |
| | UNION |
v ! INTRSC |
T + Y +
{ UNION |
| TRNSFR |
o o o o o +

Figure 2.8 Hierarchy of the PHASE2 Routine

DATA STRUCTURE

This sub-section discusses the data structure of the
data flow analysis system. All arrays and variables in the
following discussion, declared as COMMON arrays and
variables in FORTRAN, are used by the routines described
above. Data structure will be described in PASCAL-like

language for understandability and readability.

35

1) BLKTBL
BLKTBL is array(1..BTSIZE] of
record
LAST:1..MAXST: -- last stmt of a basic block
PTROG:1,.0GSIZE: -~ pointer to OUTGO
PTRIC:1,.ICSIZE: -~ pointer to INCOM
PTRRCH:1..SETSIZ; -- pointer to RCHSET
HDRNO:1..BTSIZE; -- header node of interval
PRVHDR:1..BTSIZE; ~~- corresponing header node
-=- in previous graph
end;
BKLTBL contains basic blocks consisting of the above
seven fields. LAST field contains the last statement of a
basic block. PTROG points to OUTGO array which contains a
successor node and its information. Similarly, PTRIC points
to INCOM array for predecessor nodes. PTRRCH points to
RCHSET, a set of definitions that can reach a node (R set in
the above algorithm). HDRNO contains a header node of the
interval to which a node belongs. On the other hand, PRVHDR
contains a corresponding header node in the previous graph
(lower order graph), unless the node is in the original
graph. This field i1s useful to determine the PB and DB sets
in PHASE1 of the data flow analysis routine.

. remm o

36

2) GRAPH
GRAPH is array[1..GRSIZE] of 1..BTSIZE;

A subscript of GRAPH represents a graph order and an
element of GRAPH points t0 an element of BLKTBL which
represents the last node of a flow graph. IGRAPH points ¢to
the highest order graph.

3) OUTGO
OUTGO is array[1..0GSIZE] of
record
BBNUM:1..BTSIZE; -~ basic block(= node) number
NEXT:1..0GSIZE; ~-- pointer to next element in OUTGO
EDGENO:1..0GSIZE; -- edge number
PTRDB:0,.,.SETSIZ; -~ pointer to DBSET
PTR¥B:0,,.SETSIZ; -- pointer to PBSET
PTRDEF:0..SETSIZ; -- pointer to DEFSET
PTRYRE:0..SETSIZ; -- pointer to PRESET
PTRAVL:0..3ETSIZ; -~ pointer to AVLSET
end;

OUTGO, pointed from PTROG field in BLKTBL, represents
exit edges to successor nodes with linked-list structure by
using NEXT field as a pointer to the next element, if more
than one successor node, the content of BBNUM, exist. An

exit edge number in EDGENO field is unique in all graphs.
PTRDB, PTRPB, PTRDEF, PTRPRE and PTRAVL point to DBSET,

PBSET, DEFSET, PRESET and AVLSET respectively.

[

37

4) INCOM
INCOM is array[1..ICSIZ] of
record |
BBNUM:1..BTSIZE; -- basic block(= node) number
NEXT:1..ICSIZE; ~~ pointer to next element in INCOM
end;

INCOM, pointed from PTRIC field in BLKTBL, represents
input edges from a node, the content of BBNUM field 1in
INCOM. The structure of INCOM is also linked-list with NEXT
field as a pointer to the next element.

5) NEWNOD
NEWNOD is arrayl1..BTSIZE] of 0..BTSIZE;

A subscript of NEWNOD is identical to a node number;
whereas an element of NEWNOD represents a corresponding node
in the next higher order graph to the node. Reduction of a
flow graph requires deletion of exit edges. That 1is
recognized by comparing the element of NEWNOD for a node
with that for a successor node. If both are identical, the
exit edge is deleted from a flow graph.

6) HEADER
HEADER 1is arrayl[1..HDRSIZ] of
record
NODENO:1..BTSIZE; -- header node number
PTRINT:1..INTSIZ; -~ pointer to INTER

end;

BBl Wl B ok wma e

38

During interval analysis, HEADER 1is wused to keep
header nodes. The first field of HEADER, NODENO, contains a
header node which is either processed or unprocessed by the
INTRVL routine; pointer IHDR indicates the currently proces-
sing header node and pointer HDRTOP indicates the last
header node recognized by the INTRVL routine. Processed
header nodes have some nodes which belong to the same inter-
val as a header node., Of these nodes, which are kept in
INTER discussed below, the last recognized one is pointed by
the second field of HEADER, PTRINT.

7) INTER
INTER is array[1..INTSIZ] of 1..BTSIZE;

INTER contains interval nodes, linked with HEADER.
Elements of INTER, in sequence between the element pointed
by the previous HEADER.PTRINT and by the current HEADER.P-
TRINT, belong to the same interval.

39

8) Sets for data flow analysis

DBSET is array[1..SETSIZ] of 0..DTSIZE; -- DB set

PBSET is array[1..SETSIZ] of 0,.DTSIZE; -- PB set

DEFSET is array[1..SETSIZ] of 0..DTSIZE; -- D set

PRESET is array[1..SETSIZ] of 0..DTSIZE; -- P set

RCHSET is array[1..SETSIZ] of 0..DTSIZE; -- R set

AVLSET is array[1..SETSIZ] of 0..DTSIZE; -- A set

DFPSET is array[1..SETSIZ] of 0..DTSIZE; -- union over P(p)
-= p: all input edges

DFDSET is array[1..SETSIZ] of 0..DTSIZE; -- union over D(p)
-= p: all input edges

The structure of all sets is identical; the element

pointed by a pointer in BLKTBL or in OUTGO contains the num-

ber of elements of a set for each node or exit edge. The

elements following this element are elements of a set,

representing definition identifiers discussed below. The

following example illustrates the structure of PBSET,

(R T I 4 T T O T O O I B

e
w
W
[]
-3
Wil €<—4

%

M . ———

40

The element pointed by PTRPB, 3 represents the number of
elements of PBSET for some exit edge. 7hree elements of
this edge are the numbers following 3: 1,4,7. PTRDB,
PTRPB, PTRDEF, PTRPRE and PTRAVL in OUTGO point to DBSET,
PBSET, DEFSET, PRESET and AVLSET respectively and PTRRCH in
BLKTBL points to RCHSET. These sets are saved for further
use. On the other hand, DFDSET and DFPSET, whizh represent
the union over D and P respectively for all input edges, are
computed each time D and P are determined for each exit edge
of a non-header node. The first element of these two sets
contains the number of elements of sets.
9) DEFTBL
DEFTBL is array(1..DTSIZE] of -- definition table
record
BBNUM:1,.BTSIZE; -- basic block numner
ENTPNT:1..MAXSYM; -- entry point
ARYON:=1,..MAXSUB; == array indicator
TYPKND:0..4; -- type kind
FSTNUM:1..MAXST; -~ first appearance of 1id
LSTNUM:1..MAXST; =~ last appearance of id
end;

DEFTBL contains information about definitions,
consisting of six fields: BBNUM, ENTPNT, ARYON, TYPKND,
FSTXUM and LSTNUM, A definition appears in the basic block
number BBNUN. ENTPNT represents an entry point to Symbol

Table for a variable, the left hand side of an assignment

0

O

Bt e o e e

.

© e e o Tt s o

ol

Co g SR U,

41

statement. If the variable is a simple variable, 0 is set
in ARYON; if an array element and its subscript is kown at
compile time, a subscript is set; otherwise, -1 is set.
TYPKND indicates the type of a constant, if the right hand
side of an assignment is a siyple constant, that is, without
any arithmetic operators. type INTEGER, REAL, LOGICAL and
DOUBLE PRECISION are 1, 2, 3 and 4 respectively; in the
other cases, the value of TYPKND is 0. FSTNUM field
contains a statement number where a variable appears for the
first time within the basic block BBNUM; while LSTNUM
contains a statement number where a variable appears last
within basie block BBNUM. These fields are useful to
determine lower and upper limits for an equivalence command
(see Chapter III). Note that a definition identifier is
identical to a subscript of DEFTBL array.
10) INTVAL, REALVL LGCVAL and DBLVAL
INTVAL is array[1..DTSIZE] of INTEGER; -- INTEGER constant
REALVL is array(1..DTSIZE] of REAL; -- REAL constant
LGCVAL is arrayl[1..DTSIZE] of LOGICAL; -- LOGICAL constant
DBLVAL is array{1..DTSIZE] of DOUBLE PRECISION;
-~ DOUBLE PRECISION constant

These arrays contain a value of the right-hand side

of an assignment if it is a simple constant. A subscript of

these arrays corresponds to a definition identifier,

42

CHAPTER III
APPLICATIONS OF DATA FLOW ANALYSIS

This chapter describes applications of data flow
analysis and its implementation for the FORTRAN Mutation
System,

Based on the information developed in data flow
analysis there are some useful applications to detect an
equivalent mutant. Such applications are dead code detec-
tion, recognition of loop invariants, constant propagation
and invariant propagation. If any node, for instance,is not
connected to the rest of the flow graph, all mutants
generated from this node do not affect the output from the
original program. These mutants can be considered to be
equivalent mutants as well as logically equivalent ones.
For more detailed discussions of applications to testing
mutant equivalence, see [ABDLS] and (DLS].

Some techniques of equivalence detection described in
[DLS] have already been implemented on the FMS.2 system as
an equivalence testing post-processor called Equivalence
command. Since a large number of mutants can be eliminated
on the first testing run, this'processor is run after the
mutants have been executed on the data.

On the current FMS8.2 system, there are a variety of
commands available to displaying status information after
the mutant execution. For example, the CE command displays

a program listing with equivalent mutants. The equivalent

et erra——— A
J

[——

i emermo o w

43

command (E), however, is rather special because it detects
equivalent mutants instead of displaying the results of
testing. The command format is as follows:

E STA stmt_no - stmt_no

> variable_list absolute_value

or

> variable_list EQ constant

where stmt_no - stmt_no specifies which statements
are under consideration and variable_list is a 1list of
variables separated by commas. The possible values of
absolute_value are:

POS,NONZ POS NEG, NONZ NEG NONZ
These parameters mean greater than 2zero, greater than or
equal to zero, less than zero, less than or equal to zero
and not equal to zero respectively., The detailed explana-
tion ot the E command format will be found in [BHS]. The
remainder of this chapter will discuss the algorithm of set-
ting arguments of the E command, that is, two stmt_no's,
variable_list and absolute_value shown in the above format,
its implementation and an example of equivalent mwmutants
detected in a given program.

The applications system is described in the following
section. For a node without any definitions, all incoming
definitions are available for an equivalence detecting com-
mand. However,] node with definitions is treated

differently; all reaching definitions which define the same

#

I - -

ek

C . e ¢ oy

44

variable as is defined in the node are available from the
entrance to the node to the first appearance of the
definition. Assuming that the same variable is defined
twice in the node, the first definiiton is killed by the
second one. Thus, between the first and the second
definition, the first one is available. Before the first
definition, all reaching definitions sharing a common
variable are available and between the second definition and
the exit of the node, the second definition 1is available.
All other definitions, which do not define the same variable
as defined in the node, are available from the entrance to

the exit of the node. The details of algorithm is shown 1in
Algorithm 3.1.

Sy

et T —

45

procedure EITPRT ;
var
¢ 1..BTSIZE; =-- node
: 1..0GSIZE; =-- exit edge from node i '
1 : 1..MAXST; -- lower limit of stmt for E command
s2 : 1..MAXST; -- upper limit of stmt for E command
DB is array[1..SETSI1Z] of 0..MAXST;
-=- DB set for each edge
R is array[1..SETSIZ] of O0..MAXST;
-= R set for each node
SAME is array({1..SETSIZ] of 0..MAXST;
~- set for same id ;
begin ;
if (DB[3J]l = { }) then
begin -~ no assignment statement in node i :
81 := first stmt of node i ;
s2 := last stmt of node i ;
ECMND(R[i],s1,s2) ; f
end
else -- assignment stmt in node i *
for all Xi in DB[j] do -~ X is any variable
begin ; \
SAME := {Xk | Xk in R[1i]} ; ;
if (SAME <> { }) then :
begin -- X reaches node i from other nodes [
81 := first stmt of node i ; i
82 := (stmt with first X in node i) - 1 ;
ECMND(SAME, s1,s82) ; 1
end ; 1
81 := (stmt of Xi) + 1 ; '
82 := last stmt of node i ;
ECMND(X1i,s1,s82) ;
if ((R[1]-SAME) <> { }) taen
begin
81 := first stmt of node i ;
82 := last stmt of node i ;
ECMND(R[1]-SAME,s1,s82) ; ‘
end ; {
end ;
end ;

i
J
s

Algorithm 3.1 The Applications Systems

Note: procedure ECMND executes an equivalence detecting
command. The first parameter is a set of definitions and

the second and third one are the lower and upper limit of a

statement respectively.

. e

46

Consider the following example:

+
{a}}] I:= tomm———— +
| J:= | {b}| I:= i
e + U +
{#a 1#b
! i
rmemem e e a——— +
|
]
v
fomm—mm e ———— +
{c}i i ——=(w) |
i |]
| I:= —-———(x) |
i | |
| | !
| I:= -==(y) |
| |]
} i ——(z) |
e rm e e~ ——— +
| #c
!
v

Definitions reaching to node {c} are Ia and Ja from node {a}
and Ib from node {b} (Note: Xi denotes a definition of a
variable X defined in node i). Thus,

Rl{e] = {Ia,Ja,Ib}
Definitions detined 1in nod; {c} are two Ic's but the first
definition is killed by the second one. Thus,

DBlec] = {Ic}
In the above algorithm, SAME denotes a set of definitions
which reach a node and are defined in the node, that is, a

det inition which shares the common variable and reaches the

e A by ..

47

node and/or defined in the node. Since I is defined in node
{c},

SAME = {Ia,Ib} for node {c} and Ic
Definitions in SAME, Ia and Ib, are available between (w)
and (x), the first apprearance of I, instead of (y). On the
other hand, Ja is available from (w) through (z) because J
is not defined in node {c}. Ic is available between (y)+1
and (z).

The hierarchy of the applications system is shown in
Figure 3.1, The INTRFC routine, called by the DISPLY
routine in FMS.2, interfaces between the FMS.2 system and
the data flow analysis applications system. Each applica-
tion is called from INTRFC (only EITPRT is the currently
available application and further applications will be
extended and called from INTRFC). The algorithm discussed
above has been implemented as the EITPRT routine. The
TRNSFR routine is called, when RCHSET is assigned to another
set. SETRLN sets arguments for the equivalence detecting
command as if they were set from the terminal. RESULT set
passed from EITPRT to SETRLN contains definitions applied
for equivalence detecting command. One of the arguments of
this command is a value of a variable, if it 4is known;
otherwise, POS, NEG, NONZ or combinations of these (POS and
NONZ, NEG and NONZ) are set. POS, NEG and NONZ stand for
POSitive, NEGative and NON-Zero values respectively (see

[BHS] for an equivalence command). As an internal value for

-~

C e et e w a e . o

LR

b -

TR

the argument in

48

this applications system, the following

values are assigned:

1: value
: value

value

value

value

: value

value

value

value

O W o ~N o U = W N

value

is
is
is
is
is
is
is
is
is
is

If more than one

greater than zero

less than zero

greater than or equal to zero
less than or equal to zero
non-zero

zero

LOGICAL .TRUE.

LOGICAL .FALSE.

known (INTEGER or REAL)
unknown.

definition with a common variable reach a

node, the above value is computed by wusing Parameter Kind

Decisiun Table(PKTBL) shown in Table 3.1. The first column

and first row in PKTBL are parameter kinds for two different

detinitions which define a common variable.

49
+- - remcnrnnee—————— ———————
| 112131415161 718]|
T e el L ST SR
f1111513101513101]0]
L L S il T vy
21512101 44 i i 041 0}
D e Lt S T e R Ty
1 3131 i3101}) 01 i i 0|
it aatatal St L S P S A R |
40} 40| 4101} 61 0] |
I R el bt et ety
! i 515101% 0} i 010} {
e alat T S e
161 31416161016 i 0}
T e e it Ll ettt el T et Tl |
l7i1o010}0}1O0joO0}iOol T O
T e it LT ST S PP
l8to0oto}joj{o}lo} o} | 84§
S et L L R —————

Table 3.1 Parameter Kind Decision Table

The FINDPK routine is called by EITPRT to determine a
parameter kind for a definition. This INTEGER FUNCTION
routine receives a definition and returns a parameter kind
of the definition. The DFECMD routine actually executes an
equivalence detecting command wusing information set by
SETRLN. This routine is similar to the routine in FMS.2
which executes the same command, but arguments for DFECMD
are set automatically instead of by manual operation. The
WRTINF routine traces the execution of an equivalence com-
mand, displaying its arguments on the terminal. The SAMEID
routine is called by EITPRT to examine whether there are any
definitions sharing a common variable between a set of

definitions which reach a node and a set of definitions

v at im e ——— e

B T

A g i« A

SR W

defined in the node.

50

| INTRFC I
P e +
|
|
v
I EITPRT I
o m—e——— *
l .
- e eccn—-—- - - - + ’
| i
! !
v v
L L + T + o ——————— - +
| TRNSFR | | SETRLN | | SAHEID ! SETRLN |
L atatalea et 3 ettt + L 3 e ——- +
|
rrm———— ———————— }
! H v
v v o ——————— +
porm—c—ee—- + N TS | FINDPK |
| FMS, 2 | | WRTINF | rmm—————d
iroutines| oy
| SUBCLA | {
| EMUCMP | i
| PTMIB | v
! PRCLST | trmm————y
N et 4 } FMS.2 |
iroutines|
| PRNAME |
! PRNUM |
| PRCHAR |
| TYPEBF |
e e o e wm wm

Figure 3.1 Hierarchy of the Applications System

INFEQU, which

contains the

information for an

equivalence detecting command, has the following data struc~

ture:

o

C e A ——

51

INFEQU is arrayl1..INFSIZ] of
record
DTINDX:1..DTSIZE; -- definition identifier
PARKND:0..9; =~ parameter kind
end;
DTINDX field contains a definition identifier of DEFTBL and
PARKND contains a parameter kind. These two fields are
determined by the SETRLN routine and used with the lower and
upper limit of a statement by the DFECMD routine. After
executing an equivalence detecting command, this information
is discarded.
To make clear the above discussion, consider the fol-
lowing FORTRAN program:
SUBROUTINE ASSiGN

INTEGER I,J,K
INPUT OUTPUT I,J

OUTPUT K
DATA K/3/
10 I =2 - (1)
Jd =1 -- (2)
40 J = I + K -= (5)
I=1 -= (6)
I=2 - (7
J=1I+2 - (8)
RETURN -- (9)
END - (10)

The mutation system creates 157 mutants for the above
program. After the first testing run, 51 mutants were kil-
led and 106 mutants remained as a live mutant. Then the
EITPRT routine produced the following E commands and issued

them:

e -

B o B e e —— et

e FE R

52
>E STA 2 - 2
>I EQ 2

>E STA 1 -2
>K EQ 3

>E STA 3 - 3
>k EQ 3

>I EQ 2

>J EQ 1

>E STA 4 - 4
>K EQ 3

>J EQ 1

> STA 5 -5
>I POS,NONZ

>E STA 8 - 8
>I EQ 2

>E STA 8 - 8
>K EQ 3.

EITPRT creates commands for each basic block as shown above.
The arguments of these commands are equivalent to the fol-
lowing:

1) K=3 between statement (1) and statement (8)

2) I=2 between statement (2) and statement (3)

3) J=1 between statement (3) and statement (4)

4) I>0 in statement (5)

5) I=2 in statement (8).
Since the data flow analysis routine can not evaluate a
boolean expression, the valuable I holds integer value 2 or
3 after the IF statement. Thus, the case 4) appears as
shown above, Those five cases can be easily analyzed from

the above FORTRAN program,

l_._.__..___-__.‘ e e

53

After the execution of E commands created by EITPRT,
16 equivalent mutants were detected. Some of them are:

IF (J .LE, 0) I = 3 for statement (3)

J = I+ 3 for statement (5)

J = ABS I + 2 for statement (8).
The complete sample run of this program can be found in

Appendix B.

54

CHAPTER IV
CONCLUSIONS
Data flow analysis recognizes available variables 1in
each basic block and their values if known at compile time.
Thus, the more information collected at compile time, the
more precise the analysis is. Variables, whose initial
values are not assigned at compile time or at the entry
point to the program, are undefined until their values are
assigned. In experiences with a newly implemented system,
the system equivalence command detects an equivalence mutant
automatically, based on information producedﬁby data flow
analysis.

‘In the current FORTRAN mﬁtation system, twenty two
mutant operators are used. Of these, Scalar for Constant
Replacement, Constant for Scalar Replacement, Relational
Operator Replacement and Absolute Value Insertion can be
affected by the new system. To create a mutant, 1if a
variable is replaced with the value recognized by data flow
analysis, this mutant is equivalent. Similarly, if a
constant is replaced with a variable whose value 1is
recognized by data flow analysis and equal to the constant,
this mutant is alsoc equivalent., If a value of a variable is
recognized as greater than or equal to zero, the absolute
value of the variable is equal to the original value. Also,
this mutant is detected as an equivalent mutant. Suppose

that a variable holds less than zero as its value, a

e -

g

- —, T . AT
..

55

relational operator LT is then logically equivalent to LE
from a program-flow point of view.

Those mutants created by the above four mutant
operators can be detected automatically by the data flow

analysis with an equivalence command.

)

ﬂl

56
APPENDIX
A. EXAMPLE OF DATA FLOW ANALYSIS
GL1i G[2] GL3]
iY:= {Y:= 1Y:=
v v v
{}}x:: {}} T---{6}---T
tmmmmcmm—- + 1 #7 1#10 1#11
{#1 | v v v
v ! 4==e{5}mm=st exitl exit2
$omm{2) em—e | #5 | !
| | | 1#8 {#9 {6} = {1,2,3,4}
| #2 1#3 | v v
v v] exit1 exit2
{3}Y:= {4} ===et
i {X:= {5} = {2,3,4}
1#4 | #6
v v
exitl exit2
PHASE 1
inicvialization:
e et L L L - +
i edge # | PB | DB ;
(11 (Yo,Y3} | {x1} |
| 2 | {X1,Xx4,Y0,Y3} | empty |
| 3 | {X1,X4,Y0,Y3} | empty |
o8 ¢ xuxab Tt 3y
] 5 | {Y0,Y3} | {Xu} !
| 6 ! {Y0,Y3} | {x4) !
tm——— ———— - - -
Gl(1]):
edge #1
pP(1] = PB[1] = {Y0,Y3}
pl1] = DB[1] = {X1}
edge #2
P[2) = PB[2] = {11,XM,YO,Y3}
pf2) = DB[2] = { }

©Q

- —— e s s e S e gttt et P e

o ——

l‘l

edge
P[3)
D[3]

edge

Pl 4]

D[4]

edge
P[5]

D[S5]

edge
P[6]

Dlo]

G[2]:

#Y3
= PB[3J = {X1,X4,Y0,¥3)
= DB[3] = { }
y
PP ®* PB[4]

P[2] ®* PB[4]
{Xx1,X4,Y0,Y3} ®* {Xx1,x4}
{x1,xu}

(DP ® PB[4]) + DBL4)
(D[2] * PBRI4]) + DBI4]
({ } & {X1,X4}) + {Y3}
{Y3}

0w nn g e,

(%))

PP ® PB[5]

P{3] #& PB[5]

{x1, xu Yo,Y3} * {YO0,Y3}
{Yo,Y }

LUB U LI D TR LI [T Y

(DP ® PB[5]) + DBL5]
(D{3] * PB[5]) + DB[5]
({ } ® {Y0,Y3)) + {x4}
{x4}

#6

= PP ® PB[6]

= P[3] # PB[6]

= {X1,X4,Y0,Y3) ® {Y0,Y3}

= {YO, 3}

= (DP * PB[6]) + DB[6]

= (D[3] ® PB[6]) + DB[6]

= §§ ; * {Y0,Y3}) + {xu}

i) Define PB and DB
e f. #7

BL7) = P[1] = {Y0,Y3)
DB[?] = (R[1] s P[1]) + D[

1]
= ({] ® {Y0,Y3}) « (X1}
= {X1}

57

-’

58
edge #8
PB[8] = P[4] = {X1,X4}
DB[8] = (R[2] ® pP[4]) + D[4]
= ({X4} ® {X1,X84}) «+ {Y3}
= {xu,YB}
edge #9
PB[9] = P[6] = {Y0,¥Y3}
DB[9] = (R[2] # P[6]) + D[6]
= ({X4} * {Y0,Y3}) + (x4}
= {X4}
ii) Define P and D
edge #7
P[7) = PB[T7] = {Y0,Y3}
PL7) = DBIT7] = {X1 U
edge #8
P[8] = PP * pPB[8]
= P[T] & PB[8]
= {Y?,Y3) $ {X1,X4) ~
D[8] = (DP * PB[8]) + DB[8]
= (D[7]1 * PB[8]) + DB[8]
= ({X1} ® ({X1,X4}) + {Xx4,Y3}
= {X1,X%,Y3)} @
"y
edge #9
P[9) = PP ® PB[9]
= P[7]1 * PB[9]
= {Y0,Y3} * {Y0,Y3}
= {Y0,Y3} ~
D[9] = (DP # PB[9]) + DB[9]
= (D[{7] ®* PB(9]) + DB[9]
s = ({X1} ® {Y0,Y3}) + {X4)
= {Xi} 1
(D]
G[3]):
i) Define PB and DB
edge #10
PBL10) = P[8] = { } 0
DB[10] = (R[6] ® P[8]) « DL8]
2 ({}® (})+ {X1,x4,Y3}
= [x1.x4,r3}
O

e ——. o i et .

1

59

edge #11
PB[11)
DB(11]

PHASE 11
» inicialization: R[6] = (YO}

G[3]:

[] i) Detine R
node {6} '
R[6] = R[6] + R[1) = {YO} « { } = {YO)}

ii) Define A

s edge #10
A[10] (R[6] * PB[10]) + DB[10] i
({Yo} ® { }) + {Xx1,X4,Y3} f
{X1,Xx4,Y3}

edge #11
Al11] (R[6] ® PBL[11]) + DBL11]
({YO} ® {YO,Y3}) + {Xxu}

{Y0, X4}

GL2):

i) Define R
node {1}
R(1] = R{1] « R[6] = { } « (YO} = (YO} i |

11) Define A i
edge #7 P
A[7) = (R[1) ® PB[T7]) + DBI[7] |
= ({YO} ® {Y0,Y3}) + {Xx1} ‘
= {X1,Y0}

e —— oo e

60
edge #8
R(5]1 = A[7] = {X1,Y0}
A[8] = (RI51 * PB[81) + DB[8]
= ({X1,Y0} d {X1,xn}) + {xu1Y3}
= {X1,X4,Y3}
edge #9
A[9] = (R[5] ® PB[9]) + DB[9]
= ({X1,Y0} # (Y0,Y3}) + {X#}
= {X4,Y0}
G{1]:
i) Derine R
node {1}
R[1] = R[1] + R[1) = { } + {YO} = {YO}
node {2}
R[2] = R(2] + R[51 = {X#4} + {X1,Y0} = {X1,X4,Y0}
ii) Define A
edge #1
A[1] = (R[1] ®* PB[1]) + DB[1]
= ({YO} ® {YO0,Y3}) + {x1}
= {X1,Y0s
edge #2
A[2] = (R[2] * pPB[2]) + DB[2] a
= ({X1,X4,Y0} * {X1,X4,Y0,Y3}) + { } i
= {X1,X4,Y0}
edge #3
A[3] = (R[2] ® PB[3]) + DB[3] O
= ({X1,X4,Y0} ® {X1,X4,Y0,Y3}) + { } -
= {X1,X4,Y0}
| edge #i
R(3) = A[2] = {X1,X4,Y0} ¢
A[4#] = (R[3] * PB[4]) + DB[4] d
. = ({X1,X8,Y0} ®* {X1,X4}) + (Y3}
& = {X1,X8,Y3}
.i o
e, TERLT TRl

L

’ 1 4
}
!
b
’ ’
edge
R[4]
A[5]
’
edge
A(6]
’
N
’
§
{8

(8

= {X1,X4,Y0}
1 # PBL5]) + DB[5]
x?,rol * (Y0,Y3}) + (x4}

i@ nnuwm
— N
ey K]
&

L I — -,
F‘-

o

6
and e
Y0,Y
{xu’io}’ { ’ 3}) «+ {X4}

#

61

SR8 IS P e A o e m - -

62

B. EXAMPLE OF A SAMPLE RUN

0K, run>seg fms.3
EXPER - EXPERIMENTAL MUTATION TESTING SYSTEM

TYPE "?<RET>" AT ANY TIME FOR ASSISTANCE

WHAT IS THE NAME OF THIS EXPERIMENT?
®a3s3sign

INLTIAL EXPERIMENT

ENTER FILE NAMES

Jassign
FILE: ASSIGN
ASSIGN
WHAT TYPES OF MUTANTS DO YOU WANT TO CREATE FOR ASSLGN
#3111
157 MUTANTS CREATED FOR ASSIGN
NODE # NEW #
1 6
2 6
3 6
4 6
5 6
HEADER NODE PTR TO INTER
1 5
INTERVALS
1 2 3 y 5
NODE # NEW #
6 7
HEADEg NODE PTR TO INTER
1
INTERVALS
6

DEFINITION TABLE
ID # NODE # SYMTAB ENTRY ARYON TYPKND FSTNUM LSTNUM

1 0 102 0 1 0 0
VALUE(INTEGER): 3
2 -1 93 0 0 0 0
3 -1 84 0 0 0 0
4 1 84 0 1 1 1
VALUE(INTEGER): 2
5 1 93 0 1 2 2
VALUE(INTEGER): 1 B
6 3 8y 0 1 y y
VALUE(INTEGER): 3
7 4 93 0 0 5 8
8 4 84 0 1 6 7
VALUE(INTEGER): 21885 5
---------- GRAPH # 1 ~eccccmcna-. '
NODE # = 1

LAST STMT # 2

e

-

63

’
POINTER TO OUTGO 1
NODE # 2 EDGE # 1
DBSET
y 5 :
PBSET A
’ 1 :
DEFSET |
4 5
PRESET
AVLSET
] 1 4 5
POINTER TO INCOM O
RCHSET
q 1 2 3
PREVIOUS HEADER # O HEADER NODE # 1
NODE # = 2
» LAST STMT # 3
POINTER TO OUTGO 2
NODE # 3 EDGE # 2
) DBSET
EMPTY
PBSET
' 1 2 3 4 5 6 1 8 ;
DEFSET :
m 5 ;
PRESET ;
AVLSET {
» 1 4 5
NODE # & EDGE # 3
{ DBSET
. EMPTY
PBSET
: 1 2 3 4 5 6 7 8
g DEFSET
S y 5
! pnss$r
AVLSET
1 4 5
POINTER TO INCOM 1
1
RCHSET
1 4 5
PREVIOUS HEADER # O HEADER NODE # 1
NODE # = 3
LAST STMT # 4
POINTER TO OUTGO &
NODE # & EDGE # &
DBSET

—

64
6
PBSET
1 2 5 7
DEFSET
5 6
PRESET
1
AVLSET
1 5 6
POINTER TO INCOM 2
2
RCHSET
1 4 5
PREVIOUS HEADER # O HEADER NODE # 1
NODE # = &4
LAST STMT # 8
POINTER TO OUTGO 5
NODE # 5 EDGE # 5
DBSET
7 8
PBSET
1
DEFSET
7
PRESET
1
AVLSET
1 7 8
POINTER TO INCOM 3
RCHSET
1 y 5 6
PREVIOUS HEAVER # O HEADER NODE # 1
NODE # = 5 .
LAST STMT # 9 %
POINTER TO OUTGO O H
POINTER TO INCOM 5 !
4 i
RCHSET
1 7 8
PREVIOUS HEADER # 0 HEADER NODE # 1 s
DO YOU WANT TO ADD A NEW TEST CASE ?
.
Yy
T¥PE VALUES FOR VARIABLES I J
2
TEST CASE NUMBER 1
PARAMETERS ON INPUT s
I =1 i

J =2 3
PARAMETERS ON OUTPUT

fom

-

65
?
K =3
J =4
I =2
THE PROGRAM TOOK 47 STEPS TO EXECUTE

PLEASE VERIFY THAT THE TEST CASE IS CORRECT

ty
20 YOU WANT TO ADD A NEW TEST CASE ?
n
APPLYING TEST CASE NUMBER 1
157 REMAINING LIVE MUTANTS
i 25% OF MUTANTS EXECUTED. 143/ 157 LIVE
» 50% OF MUTANTS EXECUTED. 135/ 157 LIVE
75% OF MUTANTS EXECUTED. 123/ 157 LIVE
100% OF MUTANTS EXECUTED. 106/ 157 LIVE
>dE STA 2 - 2
>I EQ 2
dE STA 1 - 2
>K EQ ;
>E STA 3 - 3 ;
>K EQ
>I EQ
>J EQ
>E STA- &4 - &
>K EQ
>J EQ
JE STA 5 - 5
>I POS,NONZ
> STA 8 -
>I EQ 2
>E STA 5 -
>K EQ 3

WHAT STATUS INFORMATION DO YOU WANT TO SEE?
#ce prog all

-=Nw w

-)

oo

LISTING THE PROGRAM UNIT "ASSIGN"
WITH SPECIFIED EQUIV MUTANTS
SUBROUTINE ASSLIGN
INTEGER K, J, I
OUTPUT K
INPUT OUTPUT J, I
DATA K/3/
10 I=z2
Jd =1
20 IF(J LT, 0) I = 3 : .

$48% IF(J .LT. 0) I = K
$59¢ IN(1 LT, 0) I = 3
$112¢ IF(J .LE. 0) I = 3

66
, 119 IF(ABS J .LT. 0) I = 3 :
! 121 IF(ZPUSH J .LT. 0) I = 3
0 J=I+K
68 J=1I4+3
$1228 J = ABS I + K
$1248% J = ZPUSH I + K
$125%¢ J = I + ABS K
$127¢ J = 1 + ZPUSH X
I =1 ;
I =2 .
J=I+2
$55% J=I+1
q $69% J =2 4+2
131 J = ABS I + 2 -
$133¢ J = ZPUSH I + 2
$1348 J = ABS (I + 2)
$1368 J = ZPUSH (I + 2)
RETURN
WHAT STATUS INFORMATION DO YOU WANT TO SEE?
*m prog all
MUTANT ELIMINATION PROFILE FOR ALL PROGRAMS
MUTANT TYPE TOTAL DEAD LIVE EQUIV
CONSTANT REPLACEMENT 14 4 28.6% 10 71.4% 0 0.0% i
SCALAR VARIABLE REPLACEM 22 10 U45.5% 12 54.5% 0 0.0%
SCALAR FOR CONSTANT REP. 21 5 23.8% 14 66.7% 2 9.5%
CONSTANT FOR SCALAR REP., 15 3 20.0% 9 60.0% 3 20.0%
SOURCE CONSTANT REPLACEM 9 2 22.2% T 77.8% 0 0.0%
UNARY OPERATOR INSERTION 16 5 31.3% 11 68.8% 0 0.0%
ARITHMETIC OPERATOR REPL 14 5 35.7% 9 64.3% 0 0.0% n
RELATIONAL OPERATOR REPL 7 0 0.0% 6 85.7% 1 14.3%
ABSOLUTE VALUE INSERTION 18 2 11.1% 6 33.3% 10 55.6%
STATEMENT ANALYSIS L] 3 75.0% 1 25.0% 0 0.0%
STATEMENT DELETION [3 H42.9% 4 57.1% 0 0.0%
RETURN STATEMENT REPLACE 8 7 87.5% 1 12.5% 0 0.0% i
DATA STATEMENT ALTERATIO 2 2 100.0% 0 0.0% 0 0.0% 'y

WHAT STATUS INFORMATION DO YOU WANT TO SEE?
#no

20 YOU WANT TO CONTINUE THE EXPERIMENT?

n

[ABDLS]

[AC]

[BC]

(BH]

[BHS]

[BLSD]

(pLS]

[GG]

[Howd]

[(Huan]

67

REFERENCES

A. T. Acree, T, J. Budd, R. A. DeMillo, R. J. Lip~-
ton and F. G. Sayward, "Mutation Analysis,"™ 1979.

F. E. Allen and J. Cocke, "A Program Data Flow
Analysis," CACM 19,(3) 1976 pp. 137-147.

W. A. Barrett and J. D. Couch, Compiler Construc-
tion:Theory and Practice, Science Resgearch
Associates, 1979.

T. A. Budd and R. L. Hess, "Exper Implementation
Notes."

T. A, Budd, R. L. Hess and F. G. Sayward, "User's
Guide for EXPER: Mutation Analysis System," 1980.

T. A. Budd, R. J. Lipton, F. G. Sayward and R. A.
DeMillo, "The Design of a Prototype Mutation System
for Programming Testing,"™ The Proceedings of
National Computer Conference, June 5-8, 1978,
Anaheim, California, U.S.A.

R. A. DeMillo, R. J. Lipton and F. G. Sayward,
"Papers on Program Testing,"™ 1979.

J. B. Goodenough and S. L. Gerhart, "Toward a

Theory of Test Data Selection,®™ IEEE Transactions

?n Software Enginnering, Vol. SE-1, No. 2, June
975. .

W. E. Howden, "An Evaluation of the Effectiveness
of Symbolic Testing,® IEEE Tutorial: Software Test-
ing & Validation Techniques, 1978.

J. C. Huang, "An approach to Program Testing," Com-
puting Surveys, Vol. 7, No. 3, September 1975.

ww - .

|

SCCURITY CLASSIFICATION OF THIS PAGE (Whan Date Entered)

READ INSTRUC IMONS

REPORT DOCUMENTATION PAGE BEFORE_COMPLETING FORM
1. REPORT NUMBER 2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
GIT-1CS-82/10
4. NITLE (and Subtitle) $. TYPE OF REPORT & PERIOD COVERFD

Equivalence Testing for Fortran Mutation System

I i
Using Data Flow Analysis nterim Technical

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(®) % CONTRACT OR GRANT NUMBCA(s)
Akihiko Tanaka . ONR~N00014~79-C-0231
ARO-DAAG29~80~C-0120

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

SChOOl of Infomat:lon and Coupm;gr 8cignce AREA & WORK UNIT NUMBERS

Georgia Institute of Technology
Atlanta, Georgia 30332

11. CONTROLLING OFFICE NAME AND ADDRESS , 12, REPORT DATE
: : ' S December, 1981
f L 75. NUMBER GF PAGES
i Rose »o> . L) 67 + v
\ [T3 MONITORING AGENCY NAME & ADORESS(/! different from Confroliing Olfice) | 15. SECURITY CLASS. (of thia report)

unclassified

 T¥e OECL AT FICATION GOWNGNADING
SCHNEOULE

[76. OIETRIBUTION STATEMENT (of thie Repore)

C e vewmaa

17. DISTRIBUTION STATEMENT (of the abetrast entered in Biock 39, It ditforent from Report)

18. SUPPLEMENTARY NOTES

-,.-\'-— I L R R e i atat M LR T L~)
PR Y . .

19. KEY WORDS (Cantinue on reverse olide Il necessary and identily by blosk number)

program testing, mutation, data flow, equivalence, reliability

Y and idsatily by Mook number)

rsg;n -un-t'fon u‘:’m approach to program testing, a method designed to
test whether a program ia either correct or radically incorrect. It requires the
creation of a nearly correct program called s mutant from a program p. An adequa
set of test data distinguishes all mutants from P by comparing the outputs. Ob-
viously, an equivalent mutant, which performs identically to P, produces the same
outputs as those of P. Thus, for adequate data selection, it is desirable that

equivalent mutant be excluded from the testing process. For this purpose, the

systen equivalence command has been implemented as an equivalent mutant detector.

ety . e AR ne 5 i 0

M

0D \’a% WI3 sormow or 1wev es w emeoeae . \mclassiffed

uncl £ .
SECURITY CLASSIFICAFION OF THIS PAGE(When Date Bntered)

As yet, the command has not been automated. Automatic detection by this

command is implemented here as an application of data flow analysis. Algo-
rithms and implementation techniques of data flow analysis are described.
Also its application as an automatic detector is described.

